Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638822

RESUMO

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Mastócitos/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
2.
ACS Sens ; 9(3): 1555-1564, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38442411

RESUMO

Extracellular vesicle microRNAs (EV miRNAs) are critical noninvasive biomarkers for early cancer diagnosis. However, accurate cancer diagnosis based on bulk analysis is hindered by the heterogeneity among EVs. Herein, we report an approach for profiling single-EV multi-miRNA signatures by combining total internal reflection fluorescence (TIRF) imaging with a deep learning (DL) algorithm for the first time. This innovative technique allows for the precise characterization of EV miRNAs at the single-vesicle level, overcoming the challenges posed by EV heterogeneity. TIRF with high resolution and a signal-to-noise ratio can simultaneously detect multi-miRNAs in situ in individual EVs. DL algorithm avoids complicated and inaccurate artificial feature extraction, achieving automated high-resolution image analysis. Using this approach, we reveal that the main variation of EVs from 5 cancer cells and normal plasma is the triple-positive EV subpopulation, and the classification accuracy of single triple-positive EVs from 6 sources can reach above 95%. In the clinical cohort, 20 patients (5 lung cancer, 5 breast cancer, 5 cervical cancer, and 5 colon cancer) and 5 healthy controls are predicted with an overall accuracy of 100%. This single-EV strategy provides new opportunities for exploring more specific EV biomarkers to achieve cancer diagnosis and classification.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Biomarcadores
3.
Virol Sin ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458399

RESUMO

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.

4.
Talanta ; 273: 125884, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508128

RESUMO

A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 µm and 4.5 µm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 µm particles and a removal rate 96.2% for 4.5 µm particles was observed at sample flow rate of 10 µL min-1 and sheath flow rate of 190 µL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 µL min-1, sheath flow rate of 190 µL min-1 and washing flow rate of 63 µL min-1.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Hidrodinâmica , Eritrócitos , Células MCF-7 , Leucócitos , Separação Celular
5.
ACS Nano ; 18(8): 6612-6622, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38359901

RESUMO

To perform multiplex profiling of single cells and eliminate the risk of potential sample loss caused by centrifugation, we developed a microfluidic flow cytometry and mass spectrometry system (µCytoMS) to evaluate the drug uptake and induced protein expression at the single cell level. It involves a microfluidic chip for the alignment and purification of single cells followed by detection with laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). Biofunctionalized nanoprobes (BioNPs), conjugating ∼3000 6-FAM-Sgc8 aptamers on a single gold nanoparticle (AuNP) (Kd = 0.23 nM), were engineered to selectively bind with protein tyrosine kinase 7 (PTK7) on target cells. PTK7 expression induced by oxaliplatin (OXA) uptake was assayed with LIF, while ICP-MS measurement of 195Pt revealed OXA uptake of the drug in individual cells, which provided further in-depth information about the drug in relation to PTK7 expression. At an ultralow flow of ∼0.043 dyn/cm2 (20 µL/min), the chip facilitates the extremely fast focusing of BioNPs labeled single cells without the need for centrifugal purification. It ensures multiplex profiling of single cells at a throughput speed of 500 cells/min as compared to 40 cells/min in previous studies. Using a machine learning algorithm to initially profile drug uptake and marker expression in tumor cell lines, µCytoMS was able to perform in situ profiling of the PTK7 response to the OXA at single-cell resolution for tests done on clinical samples from 10 breast cancer patients. It offers great potential for multiplex single-cell phenotypic analysis and clinical diagnosis.


Assuntos
Nanopartículas Metálicas , Microfluídica , Humanos , Citometria de Fluxo , Ouro , Biomarcadores , Espectrometria de Massas/métodos , Moléculas de Adesão Celular , Receptores Proteína Tirosina Quinases
6.
Anal Chem ; 96(9): 3733-3738, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373274

RESUMO

Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.


Assuntos
Chumbo , Dispositivos Ópticos , Humanos , Peróxido de Hidrogênio , Análise Espectral/métodos , Digestão
7.
Environ Sci Technol ; 58(8): 3966-3973, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353415

RESUMO

The occurrence of chlorinated derivatives of bisphenol S (Clx-BPS) and BPS was investigated in nine types of paper products (n = 125), including thermal paper, corrugated boxes, mail envelopes, newspapers, flyers, magazines, food contact paper, household paper, and business cards. BPS was found in all paper product samples, while Clx-BPS were mainly found in thermal paper (from below the limit of detection (

Assuntos
Compostos Benzidrílicos , Papel , Humanos , Alimentos , Comércio
8.
Anal Chem ; 96(4): 1742-1749, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221770

RESUMO

Speciation analysis of arsenic in urine is essential for the studies of arsenic metabolism and biological effects, but the unstable arsenic species represented by MMAIII and DMAIII pose a huge challenge to analytical accuracy. Herein, a novel urine self-sampling (USS) kit combined with an automated preparation-sampler (APS) device is rationally designed and used for convenient analysis of arsenic metabolites by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The subject can collect urine into a sampling vial at home and use a homemade syringe to pump argon to displace oxygen in the vial, thereby inhibiting the oxidation of MMAIII and DMAIII. After USS and transportation, the sampling vial is loaded directly onto the APS device, where the urine sample can be automatically mixed with diluent, filtered, and loaded into HPLC-ICPMS for arsenic speciation analysis under anaerobic conditions. For a single sample, the sampling time and the analysis time are <8 and <18 min, respectively. The recoveries of MMAIII and DMAIII in urine over 24 h at 4 °C are 86 and 67%, surpassing the conventional sampling method by 28 and 67%, respectively. When the APS is coupled to HPLC-ICPMS, the detection limits of AsC, iAsIII, MMAIII, DMAV, MMAV, DMAIII, and iAsV are 0.03-0.10 µg L-1 with precisions of <10%. The present method provides a convenient and reliable tool for the storage and analysis of unstable arsenic species in urine and lays the foundation for studying the metabolic and biological effects of methylated trivalent arsenicals.


Assuntos
Arsênio , Arsenicais , Compostos Organometálicos , Arsênio/análise , Arsenicais/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
9.
Anal Chim Acta ; 1287: 342102, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182345

RESUMO

BACKGROUND: Fluoride (F-), an anion with the smallest ionic radius and highest charge density, plays an important role in biomedical and environmental processes, making the development of accurate F- detection methods of great importance. Fluorometric methods with simplicity and sensitivity have gained considerable attention in F- detection. However, their accuracy faces challenges due to issues like autofluorescence interference during real-time light excitation and limited selectivity. Therefore, it is important to establish a simple, real-time light excitation-free, and highly selective method for the accurate determination of F- in complicated samples. RESULTS: Herein, a novel phosphorescent approach is developed for the selective and accurate detection of F- in complex samples. Phosphorescence emission CDs@SiO2 is fabricated by confining CDs in a silica protective layer. This design retains the favorable water solubility of silica while benefitting from its inertness, making it resistant to most substances. Furthermore, phosphorescent analysis without real-time light excitation eliminates autofluorescence interference, significantly improving the signal-to-noise ratio (SNR) and simplifying sample pretreatment. The specific interaction between F- and the Si-O bond can lead to the degradation of the silica protective layer, exposing the CDs to the solution, resulting in phosphorescence quenching, achieving the highly accurate and sensitive detection of F- with a linear range of 0.001-4 mM and a limit of detection (LOD) of 1 µM. SIGNIFICANCE: This novel F- phosphorescence method based on the metal-free phosphorescent nanomaterial CDs@SiO2 integrates the benefits of no autofluorescence interference, high selectivity, and full aqueous compatibility, and its combination with a smartphone provides a simple, portable, and cost-effective detection platform for accurate and highly sensitive determination of F- in complex samples.

10.
Mol Cell Biochem ; 479(1): 63-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36988778

RESUMO

Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1ß, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1ß, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Choque Hemorrágico , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Hirudinas/farmacologia , Choque Hemorrágico/metabolismo , Volume Sistólico , Nigericina/farmacologia , Função Ventricular Esquerda , Caspase 1/metabolismo , Transdução de Sinais
11.
J Hazard Mater ; 465: 133029, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042005

RESUMO

Tracking and imaging of nano-plastics are extremely challenging, especially in fresh biological samples. Here, we propose a new strategy in which polystyrene (PS) was doped with the europium chelate Eu (DBM)3bpy to quantify, track, and in situ image nano-plastics in fresh cucumber based on inherent metals using cryogenic laser ablation inductively coupled plasma mass spectrometry (cryo-LA-ICP-MS). The cryogenic conditions provide a stable condition for imaging fresh cucumber, suppressing the evaporation of water in fresh plants, and maintaining the original structure of plants with respect to room temperature imaging in LA-ICP-MS. The plants were cultivated in two types of nano-plastics solutions with low (50 mg/L) and high (200 mg/L) concentrations for 9 days. The results showed that nano-plastics mainly enrich the roots and have negative effects, which decrease the trace elements of Zn, Mn, and Cu in cucumber. Smaller PS particles are able to penetrate the plant more easily and inflict serious damage. Novel imaging method provides a novel insight into the tracking and imaging of nano-plastics in fresh plant samples. The results illustrated that nano-plastics deposition on plants has the potential to have direct ecological effects as well as consequences for potential health.


Assuntos
Terapia a Laser , Oligoelementos , Microplásticos , Plásticos , Terapia a Laser/métodos , Oligoelementos/análise , Plantas/química , Espectrometria de Massas/métodos
12.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031990

RESUMO

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Drosophila/metabolismo , Tunicamicina/metabolismo , Transativadores/metabolismo , Proliferação de Células , Proteínas Nucleares/metabolismo , Homeostase , Drosophila melanogaster/metabolismo
13.
Tob Induc Dis ; 21: 150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026501

RESUMO

INTRODUCTION: Traditional Chinese medicine (TCM) may have special advantages in facilitating smoking cessation, but consensus on effectiveness is lacking. We aim to comprehensively review, update, and refine current evidence on TCM effectiveness and safety. METHODS: Nine databases were searched from their inception up to 28 February 2023. Systematic reviews (SRs) and meta-analysis of TCM for smoking cessation were identified and retrieved. Additional databases and hand searches of RCTs from included SRs were performed for data pooling. Cochrane ROB tools and AMSTAR-2 were used to evaluate the methodological quality of RCTs and SRs, respectively. RCT data are presented as relative risks (RR) or mean differences (MD) with 95% confidence intervals (CI) using RevMan 5.4. RESULTS: Thirteen SRs involving 265 studies with 33081 participants were included. Among these 265 studies, 157 were duplicates (58.36%) and 52 were non-RCTs (19.62%). Combined with the remaining 56 RCTs identified through hand searches, 88 RCTs involving 12434 participants were finally included for data synthesis. All the SRs focused on acupoint stimulation, and the majority were of low or very low quality. The methodological quality of RCTs was either unclear or high risk. For continuous abstinence rate, TCM external interventions were better than placebo in 6 months to 1 year (RR=1.60; 95% CI: 1.14-2.25; I2=27%; n=5533 participants). Compared with placebo, TCM external application was effective in reducing nicotine withdrawal symptoms, and the effect was gradually stable and obvious in the fourth week (MD= -4.46; 95% CI: -5.43 - -3.49; n=165 participants). Twelve RCTs reported adverse events as outcome indicators for safety evaluation, and no serious adverse events occurred. CONCLUSIONS: Despite the methodological limitations of the original studies, our review suggests that TCM intervention shows potential effectiveness on the continuous abstinence rate. Extending the intervention time can enhance the effect of TCM on nicotine withdrawal symptoms. Referred to adverse events, more data for safety evaluation are required.

14.
Anal Chem ; 95(44): 16176-16184, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37879040

RESUMO

The exploration of cytology mechanisms of nanosilver uptake, toxicity, and detoxification has become an important issue due to its widespread applications. Previous studies have shown differences in the toxic response of mammalian cells to nanosilver. However, the analysis results based on cell populations ignore the impact of cell uptake heterogeneity on the expression of associated stress proteins and cellular physiological activities. In this respect, this work investigated the interaction between silver uptake and metallothionein (MT) expression in individual cells. In addition, we have also preliminarily elucidated the sensitivity variation to AgNPs by using five cell lines, e.g., LX-2, HepG-2, SK-HEP-1, Huh-7, and MDA-MB-231, by adopting a two-dimensional (2D) high-throughput single-cell analysis platform coupling laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). We developed a 2D data analysis method for one-to-one unification of fluorescence-mass spectrometry signals corresponding to a specific single cell. It indicated that there is no obvious correlation between cellular silver uptake and cell size, and the low MT expression of cells is more sensitive to silver nanoparticles. For each cell line, significant heterogeneity in MT expression was observed. This provides important information for understanding the potential heterogeneous effects of nanosilver on mammalian biological systems. Overall, detoxified cells are more tolerant to nanosilver and normal cells are more tolerant than cancer cells.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Prata/química , Metalotioneína/química , Mamíferos/metabolismo , Análise de Célula Única
15.
Anal Chem ; 95(38): 14447-14454, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695163

RESUMO

Single cell phenotypic analysis is significant for clinical diagnosis, treatment, and prognosis of cancer. Accurate differentiation of cancer stem cell (CSC) subpopulations from a large number of cancer cells may become a cancer surveillance tool and provide important implications for the development of new CSC-targeted therapy strategies. Herein, we report a new approach based on dual-isotope inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for single cell phenotypic analysis. High-throughput single cell sampling was achieved by a spiral channel microfluidic chip for cell focusing and alignment, and single cell analysis was performed with time-resolved ICP-QMS by identifying the highly specific probes. This enables the monitoring of two surface protein markers (EpCAM and MUC1) of three cell types, i.e., HeLa, MCF-7, and HepG2, at single cell level. The analysis of breast cancer stem cells further confirmed its capability in distinguishing rare cell phenotypes. The present study provides promising possibilities for adopting ICP-QMS in biomedical investigations in terms of cell typing, stemness identification of tumor cells, and cell heterogeneity analysis.


Assuntos
Isótopos , Neoplasias , Humanos , Diferenciação Celular , Células HeLa , Células-Tronco Neoplásicas , Análise de Célula Única
16.
Biomater Sci ; 11(20): 6906-6918, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37655451

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death. The efficiency of ferroptosis is restrained in the tumor microenvironment (TME) by overexpression of glutathione (GSH) and insufficient production of hydrogen peroxide (H2O2). In this work, theranostic nanoparticles Ce-aMOFs@Fe3+-EGCG, termed MEFs, are developed by coating uniform Ce-based amorphous metal-organic frameworks (Ce-aMOFs) with epigallocatechin gallate (EGCG) and Fe3+. Fe3+ is chelated by the adjacent phenol hydroxyl groups in EGCG. In the tumor cell interior, overexpressed GSH and weak acidic medium degrade the coating to release Fe3+ and EGCG accompanied by exposure of Ce-aMOFs. Fe3+ and EGCG consume GSH along with turning Fe3+ into Fe2+. Ce-aMOFs act as a nanozyme possessing dual-enzymatic activities, i.e. superoxide dismutase (SOD)- and phosphatase-like activities. In the TME, Ce-aMOFs catalyze the conversion of endogenous superoxide (O2˙-) into H2O2, and Fe2+ catalyzes H2O2 to generate toxic hydroxyl radicals (˙OH), which may further induce tumor cell death through ferroptosis. In addition, the phosphatase-like activity of Ce-aMOFs may sustainably dephosphorylate NADPH and effectively inhibit intracellular biosynthesis of GSH. Therefore, MEFs ensure down-regulation of intracellular GSH levels and up-regulation of oxidative pressure, which enhance the ferroptosis effect.

17.
ACS Nano ; 17(19): 19087-19097, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726178

RESUMO

Uneven zinc (Zn) deposition typically leads to uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and Coulombic efficiency (CE) of aqueous zinc ion batteries (ZIBs), restricting their practical application. In this work, a lightweight and flexible three-dimensional (3D) carbon nanofiber architecture with uniform Zn seeds (CNF-Zn) is prepared from bacterial cellulose (BC), a kind of biomass with low cost, environmental friendliness, and abundance, as a host for highly reversible Zn plating/stripping and construction of high-performance aqueous ZIBs. The as-prepared 3D CNF-Zn with a porous interconnected network significantly decreases the local current density, and the functional Zn seeds provide uniform nuclei to guide the uniform Zn deposition. Benefiting from the synergistic effect of Zn seeds and the 3D porous framework in the flexible CNF-Zn host, the electrochemical performance of the as-constructed ZIBs is significantly improved. This flexible 3D CNF-Zn host delivers a high and stable CE of 99.5% over 450 cycles, ensuring outstanding rate performance and a long cycle life of over 500 cycles at 4 A g-1 in the CNF-Zn@Zn//NaV3O8·1.5H2O full battery. More importantly, owing to the flexibility of the 3D CNF-Zn host, the as-assembled pouch cell shows outstanding mechanical flexibility and excellent energy storage performance. This strategy of producing readily accessible carbon from biomass can be employed to develop advanced functional nanomaterials for next-generation flexible energy storage devices.

18.
Anal Chem ; 95(35): 13297-13304, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610312

RESUMO

A 2D flow cytometry platform, known as CytoLM Plus, was developed for multi-parameter single-cell analysis. Single particles or cells after hydrodynamic alignment in a microfluidic unit undergo first-dimension fluorescence and side scattering dual-channel optical detection. They were thereafter immediately directed to ICP-MS by connecting the microfluidic unit with a high-efficiency nebulizer to facilitate the second-dimension ICP-MS detection. Flow cytometry measurements of fluorescent microspheres evaluated the performance of CytoLM Plus for optical detection. 6434 fluorescence bursts were observed with a valid signal proportion as high as 99.7%. After signal unification and gating analysis, 6067 sets of single-particle signals were obtained with 6.6 and 6.2% deviations for fluorescence burst area and height, respectively. This is fairly comparable with that achieved by a commercial flow cytometer. Afterward, CytoLM Plus was evaluated by 2D flow cytometry measurement of Ag+-incubated and AO-stained MCF-7 cells. A program for 2D single-cell signal unification was developed based on the algorithm of screening in lag time window. In the present case, a lag time window of -4.2 ± 0.09 s was determined by cross-correlation analysis and two-parameter optimization, which efficiently unified the concurrent single-cell signals from fluorescence, side scattering, and ICP-MS. A total of 495 sets of concurrent 2D signals were screened out, and the statistical analysis of these single-cell signals ensured 2D multi-parameter single-cell analysis and data elucidation.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Corantes , Citometria de Fluxo , Análise de Célula Única
19.
Traffic ; 24(12): 552-563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642208

RESUMO

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Assuntos
Proteínas de Drosophila , Animais , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
20.
Anal Chem ; 95(32): 12152-12160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37535000

RESUMO

Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.


Assuntos
MicroRNAs , Nanopartículas , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Expressão Gênica , Fluorescência , Resistência a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...